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THEOREM: Let ~(X,Y)  = ~ (XI , . . . ,  Xm, Y1,..-, Y,~) be a formula in the lan- 

guage of rings. There exists a finite sequence ~I(X) , . . . ,  ~k(X) of formulas in 

the language of rings, a positive constant C, positive rational numbers # 1 , . . . ,  #k, 

and numbers r l , . . . ,  rk E {0, . . . ,  n}, with the following property. For every finite 

field Fq and each a E ~q there exists a unique i, 1 < i < k, such that Fg ~ ~i(a), 

and the number gq(a) = [{b �9 ~q[ Fq ~ ~(a,b)}[ is either zero or it satisfies 

?-._! 
Igq(a) < Cq" 2. 

This work gives an algebraic proof of their result, which provides this estimate 

effectively. That is, it gives an algorithm to find the above formulas ~i and the 

constants #i, ri, and C explicitly. 

The main tool we use is Galois Stratification [FJ]. This procedure eliminates 

quantifiers from formulas over certain types of fields (e.g., Frobenius fields and 

finite fields). Until now we have used this tool only to obtain results about sen- 

tences (formulas with no free variables). However, this method is so transparent 

that it immediately lends itself to a systematic treatment of results of the above 

type, although the effective computation of bounds is rather technical. 

Another important ingredient in this work is the Non-regular Analog of the 

Chebotaxev Density Theorem, which we prove in Section 5. This result general- 

izes [FS, Proposition 4.1]. 

0. Feigner 's  ques t ion  

The following question of Ulrich Felgner at the Model Theory Conference in 

Oberwolfach in January 1990 motivated the main Theorem. 

Is there a formula ~ ( X )  in the language of rings f_. that defines the field Fq in 

Fq2 for each prime power q ? 

Chatzidakis, van den Dries and Macintyre [CDM] observe that the Theorem 

implies that x/q can never be an asymptotic estimate for the number of points in 

Fq that satisfies a given formula. So, they answer Feigner's question negatively: 

(*) No formula ~(X) in s defines Fq in Fq2 for, infinitely many prime powers 

q. 

Galois Stratification as developed in [FJ], combined with the Chebotarev 

Density Theorem, is well suited to treat such questions. Here is a short proof of 

(*) based on [FJ]. (The concepts involved are reviewed in Section 1 below.) 
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Fix a formula @(X) in Z:. We need the following notation. Let t be a tran- 

scendental element over Fq, and let E = Fq (t-). 

(a) Identify the set P1 of prime divisors of E of degree 1 with Fq U {c~}; the 

prime divisor that corresponds to a C Fq is given by t ~-* a. 

(b) For a polynomial g E Fq IX] denote V(g) = {a E Fq I g(a) = 0}. 

(c) For a finite Galois extension F / E  and a conjugacy class C of G(F/E) denote 

CLAIM: There exist positive integers d, 8 and qo with the following properties. 

For every q > qo there exists a Galois extension F / E  of degree < d, distinct 

conjugacy c/asses CI , . . .  ,C~ of G(F//E), where e > 0, and a polynomiaI 0 ~ g E 

Fq IX] of degree <_ 6 such that 

(1) {aeFqlFq ~ r  O C I ( F / E ,  Cj ) - ( {c~}UV(g) ) .  
j= l  

Assume that the Claim has been proved. By [F J, Proposition 5.16, with d = 

k = 1] either CI(F/E,  Cj) is empty or 

(2) I C I ( F / E , r  >_ IC~Iq _ 41Cjl . (1 + g r  + gE + 1)x/q. 
m 

Here m is some integer < [F : E] [F J, p. 59]. By [F J, Corollary 4.8], gE = 0 and 

gF <- �89 - 1)(d - 2). Also, 1 _< IC~l _ d. Hence, if (2) holds, 

ICI(F/E, Cj) I >_ d q -  4d(2 + 2 ( d -  l ) ( d -  2))x/~. 

Let q _> qo and let P(q) = {a C Fql Fq ~ ep(a)}. By (1) either IP(q)l -< 6 or 

q 
- 4d(2 + ~(d  - 1)(d - 2 ) ) v ~  - (6 + 1). IP(q)l _> 

If q is sufficiently large, then either Ie(q)l < ~ or tP(q)l has more than 
- -  d + l  

elements. In particular p(q2) r Fq, for q large. Thus (*) follows from the Claim. 

Proof of the Claim: We first prove the Claim for all q relatively prime to suitable 

k E Z. Then we show it for the powers of a fixed prime p. From these two cases 

the Claim follows. 

As mentioned in IF J, p. 425], ep(X) is equivalent to a "Galois formula" over 

R0 = Z[k -1] for a suitable k E Z (for all Fq with q prime to k). By [FJ, 
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Proposition 26.8] we may assume that this formula is quantifier free, that is, it is 

of the form Ar(X) C_ Con(B), where B = (A 1, C~/A~, Con(Ai)l i E I) is a Galois 

stratification of the affine line over Ro. 

Since A 1 = "[:Jiel Ai, exactly one of the A~'s, say A1, is of dimension 1. Put  

A = A1, C = C1, and R = Ro[A]. Then A = A 1 - V(g) for some g E Ro[X], 

and hence R = Ro[t,g(t)~-l], where t is transcendental over Q. Furthermore, 

C has the form R[z], where z is a primitive element for the cover C/A. Let 

h(Z) = irr(z, Q(t)); then h(Z) e R[Z]. 
Let q be prime to k and let E = Fq (t-). Extend the canonical homomorphism 

Ro --* Fq to r :  R- -*  E by t ~ t. Let 5 be a r o o t  of~r(h), put F = E(5), 

and extend ~ to p: C--*  F b y  p(z) = 5. Let p*: G(F/E) --* 6(C/A) be the 

homomorphism induced by p [FJ, p. 137]. The set {a E ~(F/E)I (p*(a)) E 
Con(A)} is a union of conjugacy classes of elements in ~(F/E). Write this union 

as C1 U �9 .. U C~. 

To verify (1), let a e Fq such that g(a) ~ O. Extend the canonical homomor- 

phism Ro --+ Fq to a homomorphism ~Q: R --* Fq by t ~ a. Let ~: E --+ Fq U co be 

the Fq-place defined by t ~ a. Then ~ = ~ o ~. Extend ~ to a place ~: F --* Fq, 

and let r = r o p. Thus ~b extends ~. Now, a belongs to the left hand side of 

(1) if and only if Ar(C/A, Fq, a) C_ Con(A). The latter condition is equivalent to 

~D*(G(Fq)) e Con(A). But r = p* o 5" and G(Fq)) = (Frob(Fq)). Hence this 

can be written as r �9 UCj. This says that a belongs to the right 

hand side of (1). 

Now fix a prime p, and let q be a power of p. By [FJ, Remark 25.8], ~ (X)  is 

equivalent to a Galois formula over Ro = Fp. If q is large, IF J, Proposition 26.8] 

shows that this formula is quantifier free. From this point on repeat the preceding 

arguments (replacing 'Q' by 'Fp', and 'q prime to k' by 'q large enough'). Notice 

that  r and p are inclusions, and p* is the restriction to C. | 

1. G a l o i s  c o v e r s  

The notion of a ring cover and the Artin symbol are the basic concepts of Galois 

stratification. For the convenience of the reader we redefine these concepts and 

state some of their basic properties. 

Definition 1.1: Ring cover IF J, Definition 5.4]. Let R C_ S be integral domains, 

and let E __ F be their quotient fields. The extension S/R is a r ing  cover  if R 

is integrally closed and there is z E S integral over R such that  S = R[z] and 
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the discriminant dE(Z) of z over E is a unit of R. We call such an element z a 

p r i m i t i v e  e l e m e n t  for SIR. 

If FIE is a Galois extension, we say that SIR is a Galois  ring cover. We 

sometimes write G(S/R) for the Galois group 6(F/E). 

If R0 C_ R and R0 has quotient field K, we say that the ring cover SIR is 

f in i te ly  g e n e r a t e d  (resp., r egu la r )  over R0 if R/Ro is finitely generated (resp., 

E / K  is regular). II 

Remark 1.2: (i) The condition "dE(z) is a unit of R" in Definition 1.1 is equiv- 

alent to the following. 

(1) There exists a monic polynomial g E R[X] such that g(z) = 0 and g'(z) E 
S x . 

Indeed, let f = irr(z, E) E R[X]. As dE(z) = NormF/Ef'(z), we have dE(Z) E 

R x if and only if f'(z) E S x. Thus if dE(z) is a unit of R then (1) holds. 

Conversely, (1) implies that g(Z) = f (X)h(X)  with h E R[X], and hence g'(z) = 

f'(z)h(z). Thus if g'(z) E S • then also f'(z) E S x. 

(ii) Let S/R be a ring cover with primitive element z. Then F = E(z) is 

a finite separable extension of E, and S is the integral closure of R in F [F J, 

Lemma 5.3]. 

(iii) Let S/R be a (Galois) ring cover with primitive element z, and let /~ be 

an integrally closed integral domain. Any homomorphism p: R --* /~ extends 

to a homomorphism r from S into the algebraic closure of the quotient field of 

/~ [L, Proposition 16 on p. 250]. Let 5 = r  and S = /~[~,]. Then S//~ is 

also a (Galois) cover, with primitive element 5. Indeed, let E be the quotient 

field of R, let f = i r r (z ,E) ,  and set f = p(f) E /~[Z]. Then ](5)  = 0 and 

f'(5) = r �9 r  x) _ ~x.  By (i), SIR is a cover. If SIR is Galois, then 

SIR is Galois by Lemma 1.3(d) below. II 

Let SIR be a Galois cover with primitive element z, and let FIE be the corre- 

sponding extension of the quotient fields. Let N/M be another Galois extension 

of fields and suppose r S --* N is a homomorphism such that r  c_ M. Let 

p: R ~ M be the restriction of r to R. 

LEMMA 1.3: 

(a) Let T1,T 2 �9 G(F/E). If T1 # T2 then •(TI(Z)) # ~)(T2(Z)). 

(b) There exists a unique map r G(N/M) ~ Q(F/E) such that 

(2) r162  = a( r  for hi1 a �9 G(N/M) and s �9 S. 
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(c) r is a group homomorphism. 

(d) M ( r  is a Galois extension. 

Proof of (a): We have 

I I  2 
W~W l 

: r  : 
T.~T I 

In particular, none of the factors on the left hand side is zero. 

Proof of (b): Let f ( X )  = irr(z, E).  Then F = E(z) ,  f ( X )  e R[X] and f ( X )  = 

I - I~eg(F/E) (X-  T(Z)). Hence I - L ( X -  r = r  e MIX]. Let a �9 

G(N/M) .  Then a( r  is a root of r  = 1-L(X - r Hence, there 

is T �9 G(F/E)  such that r = a(r  By (a) such a ~- is unique; put 

r  = T. As S = R[z], (2) follows. 

Proof of (c): This follows from the uniqueness in (b2). 

Proof of (d): The polynomial r  = l-I~(X - r splits in r  = 

r C_ M(r  | 

We notice that  ~b* depends not only on r and S but also on R and M as well. 

LEMMA 1.4: (a) H e  is an inclusion of rings, then r is the restriction to F. 

(b) I f N  = M(r  then r is injective. 

(c) Let $/[~ be another Galois cover, and let p: S ~ S and ~: S ~ N be 

homomorphisms such that p(R) C_ [t and (b([~) C M. I f  ~b = ~ o p, then 

r = p* o 2*. In particular, i f  R C_ [t and S C_ S and r extends r then 

r -- resFr 

(d) Let r �9 G(F/E) .  Then (r o r )*(a)  = T - I r  for al} a �9 Q(N/M) .  

(e) The map T ~-* ~b o T is a bijection between Q(F /E)  and the set of homo- 

morphisms S --* N that extend ~. 

(f) Let a �9 6 ( N / M ) .  Then {r r  S --* Y extends ~} is the conjugacy 

class in G(F/E). 

Proof of (a), (b), (c) and (d): Immediate from the uniqueness of r (Lemma 

1.3(b)). 

Proof of (e): The map is injective by Lemma 1.3(a). It is surjective by [L, 

Corollary 1 on p. 247]. 

Proof of (f): Apply (d) to (e). | 
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Definition 1.5: In the above setup let M be a finite field, N = M its algebraic 

closure, and Frob E G(M) = G ( M / M )  the Frobenius automorphism of M. The 

conjugacy class 

ar(S/R,  ~) = ar(S/R, M, ~) = {~b'*(Frob)] r S--* M extends ~} 

of elements in G(F/E)  is called the A r t i n  s y m b o l  of ~. The conjugacy class 

Ar(S /R ,  ~) = Ar(S /R,  M, ~) = {r r  S ~ M extends ~} 

of subgroups in G(F/E)  is called the A r t i n  s y m b o l  (of  g ro u p s )  of ~. 

Notice that Ar(S /R ,  ~) = {(T)[ T e ar(S/R, ~)}. I 

A set of elements (resp., subgroups) of a group G is called a conjugacy 
d o m a i n  if it is closed under conjugation. Let Cona(Yt) denote the smallest 

conjugacy domain of elements (resp., subgroups) of G generated by Ft. The 

following property of the Artin symbol follows from Lemma 1.4(c). 

LEMMA 1.6: Let S / R  and S / R  be Galois covers, and let ~: R ~ M be a 

homomorphism. Let ~r: R ~ [~ be a homomorphism, and let p: S -+ S be an 

extension of re. Then ar(S/R, ~ o 7r) = Cong(s/n)p*(ar(S/R, ~) ) and Ar(S /R ,  

o ~r) = Cong(s/n)p*(Ar(S/R, ~)). In particular, i f R  C_ R and S C_ S, and F is 

the quotient field of S, then ar( S/  R, ~ o ~r) = ConG(s/n)resFar( S / R , ~). 

2. Algebraic geometry 

In this section we recall some basic definitions and concepts from algebraic 

geometry. 

Let Ro be an integral domain and K its quotient field. 

Definition 2.1: (i) An Ro-a lgebra ic  set  V = V ( f l , . . . ,  fro) in A N is the set of 

common zeros of polynomials f l , . . . ,  fm C Ro[X1, . . . ,  Xn] in h " .  We say that 

V is g iven  if f l , . . . ,  fm are explicitly given. 

(ii) An R o - c o n s t r u c t i b l e  set  in A N is a Boolean combination of Ro-algebraic 

sets. It is g iven  if the latter sets are given. 

(iii) An R0-basic set  is an Ro-constructible set of the form A = V - V(g), 

where V = V ( f l , . . . ,  fro) is an R0-algebraic set irreducible over K and g C 

Ro[X1, . . . ,  X~] is a polynomial not vanishing on V. | 
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We identify a "given" Ro-constructible set with the underlying polynomials 

that define it. Below we define some notions for such sets, which may actually 

depeni, on the underlying polynomials. 

Definition 2.2: Let A = V ( f l , . . . ,  fro) - V(g) be an Ro-constructible set. Sup- 

pose that ~o: Ro --* R is a homomorphism into an integral domain R. Denote 

the R-constructible set Y(~vo(fl),... ,~Vo(fm)) - Y(~o(9)) by AR. (We abuse 

notation in omitting reference to ~Vo.) If M is a field containing R, let 

A ( M )  = {a e Mn[ qOo(fl)(a) . . . . .  ~O(fm)(a) = 0, ~o(g)(a) # 0}. | 

Definition 2.3: Let A = V - V(g) C_ A n be an Ro-basic set. Then dim(A) = 

dim(V) and deg(A) = deg(V). Call deg(g) the c o m p l e m e n t a r y  d e g r e e  of A. 

Let x = ( X l , . . . , xn )  be a generic point of V over K. We associate to A 

three rings derived from x: Ro[A] = Ro[x,g(x)- l ] ,  K[A] = g [ x , g ( x ) - l ] ,  and 

K(A)  = K(x) .  Given a homomorphism ~o: Ro --* M into a field M, there is an 

obvious bijection between the set A(M)  and 

{~v e Hom(R0[A], M)I ~v extends ~o}- 

We list some properties of A whose definitions involve these rings. 

(i) A is Ro-normal  if Ro[A] is integrally closed. 

(ii) A is a b s o l u t e l y  Ro-normal  if AR is R-normal for every integrally closed 

integral domain R and every homomorphism qOo: R0 -4 R, whenever AR is 

an R-basic set and dim(AR) = dim(A). (In this case AR will be absolutely 

R-normal.) 

(iii) A is a b s o l u t e l y  i r r e d u c i b l e  if V is absolutely irreducible (in which case 

V is called a var ie ty) .  II 

LEMMA 2.4: Assume that Ro is integrally dosed. Let A = V - V(g) be an 

Ro-basic set. 

(a) Suppose that Ro[A] can be written as Ro[z l , . . . ,  Zm], where for each 1 <_ 

i < m one of the [ollowing three cases occurs: either 

(i) z~ = g ( z l , . . . ,  z~-l) -1 for some g E Ro[Z1, . . . ,  Z~-I]; or 

(ii) R0[z l , . . . ,  zi] /Ro[zl , . . . ,  z,-1] is a ring cover [Definition 1.1]; or 

(iii) zi is transcendental over the quotient field of Ro[z l , . . . ,  z~-l]. 

Then A is absolutely Ro-normal. 
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(b) Assume that Ro is a given integrally closed integral domain, presented 

in its quotient field K (see IF J, p. 229]). Then we can compute h C 

Ro[XI , . . . ,  Xn] not vanishing on A such that A' = A - V(h) = V - V(gh) 

is an absolutely Ro-normal basic set. 

Proof of (a): First notice that Ro[zl , . . . ,zm] is integrally closed. Indeed, let 

Ri = Ro[zx,. . . ,  zi], and assume, by induction, that Ri-1 is integrally closed. 

Then Ri = Ri-x[zi] is also integrally closed: in case (i) by [L, Proposition 8 on 

p. 242], in case (ii) by [F J, Lemma 5.3], and in case (iii) by [ZS, p. 85, Thin. 

29(a)]. 

Next let ~o: R0 ~ R be a homomorphism into an integrally closed integral 

domain R such that AR is an R-basic Set and dim(AR) = dim(A). Then ~o 

extends to a homomorphism ~: Ro[A] --~ R[AR], and R[AR] = R[21,...,Zm], 

where 2i = ~(zi). Conditions (i), (ii), (iii) still hold if we replace zj by 5j and 

R0 by R. Thus R[AR] is again integrally closed. 

Proof of (b): If R0 is a field, [FJ, Lemma 17.28] shows how to choose h so that 

R0[A ~] is integrally closed. The same arguments work if Ro is only an integrally 

closed integral domain. Moreover, the h constructed is such that  R0[A ~] has the 

structure given in (a), so A ~ is absolutely R0-normal. | 

Remark 2.5: In the setup of Lemma 2.4, if the ring R 0 is also regular [M, p. 140], 

then so is Ro[A]. In fact, as in the proof of Lemma 2.4(a), if R~_I is regular, 

then so is R~. In case (i) this is clear. In case (ii), R~ is an ~tale R~_l-algebra [R, 

Proposition 8 on p. 18], and therefore regular by JR, Exercice on p. 75]. In case 

(iii) it follows from [M, (17.J)]. | 

Definition 2.6: Ring/set cover. Let A be an Ro-normal basic set. If S/Ro[A] is 

a (Galois) ring cover, then we say that S/A is a (Galois) r i n g / s e t  cover. 

Let S/A be a Galois ring/set cover, and let M be a finite field. A point 

a E A(M)  corresponds to a homomorphism ~: R0[A] --* M (Definition 2.3). The 

A r t i n  s ymbo l  ar(S/A, M, a) = ar(S/A, a) C G(S/Ro[A]) is defined as the Artin 

symbol ar(S/Ro[d], ~) (Definition 1.5). Similarly, Ar(S/A, M, a) = At(S/A,  a) = 

Ar(S/Ro[A], ~). | 

Remark 2.7: Degrees. Let V be a closed subset of the projective space ?n, 

defined over an algebraically closed field K. Let H C_ ~ be a hypersurface 

defined by a polynomial of total degree d. 
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(a) deg(H) = d [H, Prop. 1.7.6(d)]. 

(b) We say that V is of p u r e  d imens ion  r if all of its irreducible components 

Z are of dimension r. For such V we have deg(V) = Y~z deg(Z) [H, 

Prop. 1.7.6(b)]. 

(c) Let V be of pure dimension r. Assume that H contains no irreducible 

component of V. Then V O H is of pure dimension r -  1 and deg(V n H) < 

d.  deg(V). 

Indeed, let V = Ui v / a n d  V/o H = Uj z i j  be the decompositions into 

irreducible components. Then V N H = Ui Uj z i j .  By the dimension 

theorem [H, Thm. 7.2], dim(Zij) = dim(V/) - 1 = r - 1, hence V N H is of 

pure dimension r - 1. Furthermore, by (b), deg(Y O H) < ~ i  ~ j  deg(Zij). 

By (a) and by B~zout's theorem [H, Thm. 1.7.7], Y~d deg(Zij) < d.deg(V/), 

for each i. Summing up these inequalities over i and using (b) we get 

)-'~i ~ j  deg(Zij) < d.  )-~i deg(v/) < d.  deg(V). 

The above facts remain true if we replace ~ by the affine space A n. Indeed, we 

may consider A ~ as an open subset of IP~; replacing the ambient sets by their 

Zariski closures in ~n changes neither degrees nor dimensions. I 

Section 4 uses the following technical result. 

LEMMA 2.8: Let K be an algebraically closed field. Let V C A n and W C_ 

A n+~ be varieties over K with respective generic points x and (x, z), where 

x = ( x l , . . .  ,xn),  z = ( z l , . . . ,  z~). Suppose that zi is algebraic over K(x)  and fix 

hi �9 K [ X 1 , . . . ,  Xn,  Zi] such that hi(x, Z~) r 0 and hi(x, zi) = 0, for 1 < i < e. 

Then dim(W) = dim(V) and deg(W) _< deg(V) �9 1-L~=I deg(hi). 

Proof'. The first assertion is clear. 

To prove the second assertion let t t , . . . ,  t~ be algebraically independent over 

K(x).  For every 0 < i < e let Vi be the variety in A n+~ defined by the generic 

point (x, Zl . . . .  , zi, t i + l , . . . ,  t~) over K. Thus V/is of dimension dim(V) + e - i, 

the variety Vo = V x A ~ is of degree deg(V), and V~ = W. It suffices to show 

that deg(V/+l) _< deg(v/)deg(hi+l) for 1 < i < e. 

Let U = V/ n V(hi+l).  We have V/+I c_ U C_ V/, and dim(V/+1) = 

dim(V/) - 1 = dim(U). Thus V/+I is one of the irreducible components of U. 

By Remark 2.7(c), deg(U) _< deg(v/)deg(hi+t), and U is of pure dimension. 

Therefore, by Remark 2.7(b), deg(V/+l) _< deg(U). Our claim follows from these 

two inequalities, l 



Vol. 85, 1994 COUNTING POINTS 113 

3. C o u n t i n g  r a t i ona l  po in t s  on  basic sets  

We begin with a crude upper bound on the number of points in sets of pure 

dimension (Remark 2.7(b)). Cf. [LW, Lemma 1]. 

LEMMA 3.1: 

(a) Let A be a closed subset of A n of pure dimension r and degree d defined 

over ]Fq. Then IA(Fq)I <_ dq ~. 

(b) Let A be a closed subset of pn of pure dimension r and degree d defined 

over Fq. Then [A(Fq)[ _< d(q + 1) ~ _< 2~dq ~. 

Proof of (b): By induction on r. We may assume that  no proper linear variety 

L C Pn defined over Fq contains A. Otherwise choose a minimal L with this 

property, and change the coordinates so that  L becomes a projective space. 

Assume first that A is irreducible over Fq. Then the absolutely irreducible 

components of A are conjugate over Fq. For each a -- (a0:al) E ]Pl(]Fq) let La 

be the linear subvariety V(aoX1 - alXo) of PI(Fq). Then A ~ La, and as L~ is 

defined over Fq, it contains no absolutely irreducible component of A. By Remark 

2.7(c), A (3 La is of pure dimension r - 1 and deg(A N L~) _< d. By the induction 

hypothesis, [(AnL~)(]Fq)[ _< (qd-1) r-1. We have A(Fq)=  U~epI(L)(AnL,)(Fq).  

Hence IA(Fq)[ _< d(q + 1) ~. 

In the general case let V1,. . . ,  Vs be the irreducible components of A over 

Fq. Then ~-~i deg(Vi) = d [H, Prop. 1.7.6(b)]. By the preceding case [V~(Fq)[ < 

deg(Vi)(q + 1) ~. Hence [A(Fq)] _< ~ deg(Vi)(q + 1) ~ = d(q + 1) ~. 

Proof of (a): Similar to the proof of (b). | 

COROLLARY 3.2: Let V C • be a projective variety of dimension r and degree 

d, and let H be a hypersurface of degree d' in ~ defined over Fq, not containing 

V. Then I(Y N H)(Fq) I < dd'(q + 1) r-1 < 2~-ldd'q~-l.  

Proof: By Remark 2.7(c), V A H is of pure dimension r -  1 and deg (V N H)  <_ dd'. 
| 

Let V be a variety in the projective space l} ~ of dimension r and degree 

d defined over Fq. Let /Yq = IY(Fq)l. The Lang-Weil [LW] estimate for Nq 

produces a constant a0(n, r, d) such that  

r - - !  (1) I N q - q r  I < ( d - 1 ) ( d -  2)q 2 + a 0 ( n , r , d ) q  ~-1. 
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Their proof uses induction starting from r = 1. Wolfgang Litz [Li, p. 48] carefully 

follows the reduction steps and computes a suitable value for ao(n, r, d): 

(2) ao(n, r, d) = 2"- l (d(d  - 1) 2 + 1) 

+ r  (1 + ( d -  1 ) ( d -  2 ) +  22n+r-a2mm2~d2),/ 

(n+d] r 
w i t h m = ,  n , �9 

For the estimate of numbers of points on basic sets define 

(3) a(n,r ,d ,  5) = ao(n,r,d) + 2r- ld(6  + 1). 

Notice that  a is a non-decreasing function in each of its variables. 

PROPOSITION 3.3: Let A C_ A n be a basic set of dimension r, degree d and 

complementary degree 6, defined over Fq. Let Nq = [A(Fq)[. 

(a) I[ A is absolutely irreducible, then 

(4) _ 2 ) q  2 + a ( n , r , d ,  5)qr-1. INq - q~l < (d - 1)(d - ,._1- 

(b) If  A is Fq-normal but not absolutely irreducible, then A(Fg) = 0. 

Proof o[ (a): Write A as A = V - V(g), where V is an absolutely irreducible 

variety defined over Fq and g E Fq [Xz , . . . ,  Xn] is a polynomial not vanishing on 

V. (When r = 0, then A = V, d = 1, and [V(Fq)[ = 1.) View A n as the open 

subset of P~ defined by Xo ~ 0. The Zariski closure of V in P~ is an absolutely 

irreducible projective variety V of degree d and dimension r defined over Fq. Let 

Nq -- [V(Fq)[. Consider the homogenization 

g, Xn) 
: ~og~'-~O0,..., Xo ~- ~ q [ X o , . . . , X n ] ,  

o f g  [H, p. 11]. Then A = V -  ( I ? ~ H ) ,  where H = V(Xog*). Therefore 

deg(g )  = deg(X0g*) = 5 + 1 (Remark 2.7(a)). Hence, by Corollary 3.2 and by 

(1) and (3) 

INq - q~l <- INq - q~l + I( ~ N H)(Fq) I 

( d -  1 ) ( d -  2)q ~-�89 + ao(n,r,d)q ~-1 + 2"-Zd(5 + 1)q ~-1 

= 2)q 2 + ~(n, r, d, ~)qr-1. ( d -  1 ) ( d -  , ._! 
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Proof of (b): Let L be the algebraic closure of ]Fq in the quotient field of Fq [A] 

(=the function field of A); by assumption L ~ Fq. The elements of L are certainly 

integral over Yq [d] and hence L C_ lFq [A]. If d(]Fq) r 0, there exists an Fq- 

homomorphism Yq [A] ~ Fq. It restricts to an Yq-homomorphism L --~ Fq, a 

contradiction. | 

4. T h e  special  n o n r e g u l a r  ana log  of  t he  C h e b o t a r e v  d e n s i t y  t h e o r e m  

We state and give a full proof of a more explicit version of [FS], Proposition 4.1. 

Let K be a fixed finite field, let h" be its algebraic closure, and let G(K) = 

G(fi:/K) be the absolute Galois group of K. The Frobenius automorphism Frob 

over K generates G(K). 

Notation: Let S be an integrally closed domain containing K with quotient field 

F. Let F0 denote the algebraic closure of K in F, that is, the integral closure of 

K in S. Let A(S) be the set of Fo-homomorphisms qa: S ~ F0. 

Let S/R  be a finitely generated regular Galois ring cover over K (Definition 

1.1). Let E, F be the quotient fields of R, S, respectively, and let L = F0 be the 

algebraic closure of K in F. 

Observe that A(R) = Homg(R,  K). In particular, if R is the coordinate 

ring of an absolutely irreducible affine variety A defined over K,  then we may 

identify A(R) with A(K). | 

LEMMA 4.1: Every ~ C A(R) extends to exactly [F : LE] distinct L-homomor- 

phisms ~b: S --* K. 

Proof." First, 9~ extends to a unique L-homomorphism ~': LR --~ L. Now, S /LR 

is a cover, so S = RL[z], where p(X) = irr(z, LE) E LR[X]. The extensions of 

~' to an L-homomorphism S ~ h" correspond bijectively to the mappings of z 

onto one of the [F:  LE] distinct roots of ~'(p)(X) E K[X] in K. | 

Consider an L-homomorphism r S --* K that satisfies r  = K. By 

Lemma 1.3 this induces a group homomorphism r G(K) --* G(S/R) = G(F/E) 

with: 

(1) r (~p*(a)(s)) = a(r for all s E S 

In particular, since r fixes L, 

(2) resnr = resLFrob. 
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Notation: For T E G(F/E)  let 

C ( S / R ,  T) = {r S ~ K[ r is an L-homomorphism, 

r = g and r = 7}. 

LEMMA 4.2: Let C be a conjugacy class in G(F/E)  and let T E C. Then 

I{~ E HomK(R,K)[  a r (S /R ,~ )  = C}I - IF !C]-LE] IC(S/R'  T)]. 

Proof: Put C -- {~ E HomK(R,K)[  a r (S /R ,~ )  = C). By Lemma 4.1, every 

E C extends to exactly IF : LE] L-homomorphisms S -~ K. These extensions 

are the elements of Uoec C ( S / R ,  a). By Lemma 1.4(d), for each p E G(F/E) ,  

r E C ( S / R ,  pTp -1) if and only if r o p E C(S /R ,T ) .  Hence [C(S/R,a)[  -- 

[C(S/R,  ~-)[ for each a E C. We conclude that 

IF :  LE].  ]C[ = o ? c C ( S / R , a )  = [C I �9 [C(S/R,T)[ .  I 

The following theorem combines the field crossing argument [F J, Section 

23.1] and descent [F J, Section 9.9]. It enables us to reduce the counting of points 

with a given Artin symbol to the counting of K-rational points in a basic set 

(Proposition 3.3). 

PROPOSITION 4.3: Let 7- E ~ ( F / E )  such that resLT : resLFrob. Let L' = K(w)  

be a finite Galois extension of K of degree e that contains L. Put  S'  = L 'S  and 

F'  = L'F.  Then the following hold. 

(a) L' is the algebraic closure of K in S'. 

(b) There exists a unique ~-' E G(F ' /E)  such that resFT' = T and resL,T' = 

resL,Frob. Moreover, ord(T') = lcm(ord(~-), e). 

(c) S' is the integral closure of R in F'. 

Now, assume that ord(T) [ e. Let E'  be the fixed field of T ~ in F'  and let R' be 

the integral closure of R in E'. Then, these further conditions hold. 

(d) E' M K = K and E'L '  = F'. 

(e) R' = R[y l , . . . ,  y~], where (Y l , . . . ,  Y~) E (F')  e is the solution of the system 

of linear equations 

(3) ~'~Frob~(wJ)yj =T~(Z), i =  1 , . . . , e  
j=l 
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over L'. 

(f) S' = R'L'  and S ' / R '  is a finitely generated regular Galois ring cover over 

K.  

(g) IC(S ' /R ' ,  ~')I = IC(S/R,  T)I. 

(h) IC(S ' /R ' ,  v')l = IA(R')I. 

E I F I R I S I 

E - -  R M 

Z ,  

E L  EL '  

/ 
S 

J 
RL  RL  I 

K - -  L L I K - -  L L I 

P r o o f  of  (a): S is linearly disjoint from _~ over L. Hence L 'S  is linearly disjoint 

from h" over L'. 

P r o o f  of  (b): From (a), L I A F = L. So L 'E  n F = LE.  Therefore,  

(4) G(F ' /E )  ~- G(F /E)  XG(LE/E ) ~ ( L ' E / E )  ~- G(F/E)  XG(L/K) G(L ' /K) .  

There  is a unique v'  6 G(F ' /E )  mapped  by this isomorphism onto (v, resL,Frob). 

The  order of ~-' is the least common multiple of ord(T) and ord(resL,Frob).  

Proof of (c): It suffices to show tha t  S'  is the integral closure of S in F ' .  As 

w is a primitive element for the ring cover S I / S  (Definition 1.1), this follows by 

Remark  1.2(ii). 

Proof of (d): The  restrict ion map ~ ( F ' / E ' )  --~ G(L ' /K)  sends the generator  ~-' 

of G(F' /E ' )  onto the generator  resL,Frob of ~ ( L ' / K ) .  Therefore  it is surjective. 

Moreover, it is an isomorphism: [F'  : E']  = ord(T') = lcm(ord(7),  e) = e = 

[L ' :  g ]  by (b). Hence, E'ML'  = K and E'L '  = F'. Thus E ' M K  = E ' M F ' N K  = 

E I n L t = K.  

Proof of(e): As (Frobi(wJ)) is an invertible e x e matr ix  over L'  [L, p. 212], we 

have Y l , . . . ,  Y~ 6 L 'S  = S'. Apply T' to (3). By (b) 
e 

~ F ~ r o b i + l ( ~ J ) T l ( y j )  ~- T iT l ( z ) ,  i = 1 , . . .  ,e. 
j = l  
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Thus  ( r ' ( y l ) , . . .  ,7'(y~)) also solves (3). Hence "r'(yj) = yj for each 1 < j < e. It  

follows tha t  y l , . . . ,  Y~ �9 E/. As S '  is integral over R, it is also integral  over R ~. 

So Yl , . . . ,Yr  ~ S ~ N E ~ C_ R ~. 

Denote  R [ y l , . . . , y e ]  by R".  We have R"  C_ R' .  By (3), z �9 R"L'. Hence 

R ' L  ~ -- S ~, and therefore R~L ~ = S'. Since by (d) L ~ is l inearly disjoint f rom E ~ 

over K ,  we have R"  = R ~. 

Proof of (f): We have shown above tha t  R'[w] = R'L' = S'. Thus,  R'[a~]/R' 

is a Galois cover (and w its pr imit ive element).  Regular i ty  follows f rom (d) and 

finite generat ion f rom (e). 

Proof of (g): We show tha t  the restr ict ion m a p  re s f :  C(S' /R ' ,  "r') --, C(S /R ,  7") 

is bijective. Applying L e m m a  4.1 to the cover S~/S over L ~, we conclude tha t  

every r �9 C(S/R ,  T) extends to a unique L ' - h o m o m o r p h i s m  r  S '  --* h" = L. 

We must  show tha t  r  �9 C(S~/R t, T'). 

Let us first verify tha t  r  = K .  There  exists a �9 G(F' /E)  such tha t  

(5) r  o a = Frob o r  

[L, Corol lary 1, p. 247]. In  part icular ,  r = Frob( r  for each x e S. 

By (1), r e sFa  = r  = T. Fur thermore ,  resL, a = resL,Frob. Thus  (b) 

implies a = T'. We conclude from (5) tha t  r  = F r o b ( r  for each x �9 R ' ,  

and thus r  = K .  

By (5), r  = a = T'. Thus,  r  �9 C(S ' /R ' ,  T'). 

Proof of (h): By L e m m a  4.1, every r �9 A(R ~) extends to a unique L~-homomor- 

phism r  S '  ---, h" = L. By (2), resL,r  = resL,Frob. From (d) we 

have de te rmined  the restr ict ion of ~.1 to the field of constants  of L ~. Therefore  

(b) shows tha t  ~-~ is the unique element of G(F~/E ~) tha t  restr icts  to resL, Frob. 

Thus  r  = T', and r  �9 C(S'/R',T'). | 

To formulate  the main  result of this section, we fix the following data .  

(6a) A = V - V(g) is an Fq-normal  absolutely irreducible basic subset  of A n 

with d im(V)  = r, deg(V)  = d, deg(g) = 5, and x is a generic point  of V 

o v e r  ]~q. 

(6b) S/A  is a regular Galois r ing/se t  cover over lFq and F / E  is the corresponding 

Galois extension of fields. 

(6c) L is the algebraic closure of Fq in F.  
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(6d) R = Fq[A] = ]~q[X,g(X) -1] and S = R[z]. 

(6e) h(X, Z) e L[X1 , . . . ,  Xn, Z] satisfies h(x, Z) r 0 and h(x, z) = 0. 

THEOREM 4.4 ((): Special nonregular analog of the Chebotarev density theo- 

rem) Let C be a conjugacy class of exponent e in G(F/E) .  Set 

N -- I{a C A(Fq)[ ar(S/A,a)  = C}I = I{~ e Hom~q (R, Fq) I ar(S/R,  ~) = C}I. 

(a) If  resLC ~ {resLFrob}, then N = O. 

(b) IfresLC = {resLFrob}, then 

(7) IN-cq~ l  ~ c ( d ' -  1 ) ( d ' - 2 ) q  ~-�89 +ca(n ' , r ,d ' ,5)q  ~-1. 

ICl , n I d I Here c = [F:LE] = n + e, = d . deg(h) ~, and a is defined by (3) of 

Section 3. 

Proof." Choose T C C. By Lemma 4.2, N = cIC(S/R, T)I. 

In case (a), resLT ~ resLFrOb. Hence C(S /R ,  ~-) = r by (2). Thus, N = 0. 

In case (b), resL7 = resLFrob. Let K = Fq. As 

[L: K] = ord(resLFrob) = ord(resLT) [ ord(T ) = e, 

the unique extension L t of K of order e contains L. Thus, we may use the no- 

tation and the results of Proposition 4.3. By (g) and (h), [V(S/R,  T)I = IA(R')I. 

Therefore N = clA(R')I. Let V' C A n+~ be the absolutely irreducible vari- 

ety defined over K that has (x, y) as generic point, and let A' = W - V(g). 

Then K[A'] ~--K R'. We conclude that IA(R')I --- IA'(K)I. Below we show that 

deg(Y') ~_ d'. This gives (7) by Proposition 3.3(a). 

Finally we estimate deg(V'). Denote zl = Ti(Z) for each 1 < i < e, and let 

z = (Zl , . . . ,  zr Let V" C_ A T M  be the variety defined over h" that has (x, z) 

as generic point. Equations (3) define a K-linear automorphism of A T M  that 

maps V' onto V". Hence deg(V') = deg(V"). So, by Lemma 2.8, deg(V') _< 

d-deg(h)  ~ = d'. | 

5. T h e  abso lu te  nonregular  analog  o f  t h e  C h e b o t a r e v  dens i ty  t h e o r e m  

The absolute nonregular analog of the Chebotarev density theorem (Theorem 5.3) 

considers a situation similar to the special nonregular analog of the Chebotarev 
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density theorem (Theorem 4.4). Both  theorems deal with a Galois r ing/set  cover 

S/A  and a conjugacy domain C of G(S/A). The differences are as follows. 

In Theorem 4.4, S /A  is defined over a finite field lFq. In Theorem 5.3, 

S /A  is defined over an integrally closed integral domain Ro, which may have 

characterist ic 0. Theorem 4.4 estimates the number  of points a E A(Fq) for 

which ar(S/A, a) = C for the part icular  base field Fq. Theorem 5.3 est imates this 

number  for each field Fq such tha t  there exists a homomorphism ~0:R0 ~ Fq. 

LEMMA 5.1: Let R C R ~ C S be rings such that both S I R  and S I R  ~ are Galois 

covers. Let  ~: R --* Fq be a homomorphism. Let G = ~(S /R) ,  G' = ~ (S /R ' )  

and C = ar(S/R, ~). Then 

Ivl Iv' n el 
[{~': R'  --* Fq[ resR~' ---- qo}[ -- [C[ [G'[ 

Proo~ Consider the set 

A = {r S --* Fq[ r e sn r  = ~o, r  C G'}. 

(By Lem ma  1.4(c), r  is the same, whether  defined with respect to the cover 

S / R  or S/Rt . )  Each ~t: R ~ __. Fq tha t  satisfies resFt~ I = ~ extends to exact ly  

]G'] elements of A (Lemma 1.4(e)), and each element of A is obta ined this way. 

Thus  we have to show tha t  [A[ = ( [G] / ICI) .  [G' N C]. 

If G~AC = 0, then A = 0. Otherwise we can choose an extension r  S --* ]Fq 

of qo such tha t  T = ~b*(Frob) �9 G'. Then,  apply Lemma 1.4(e) and (d) to get 

& = { r 1 4 9  ( r 1 4 9 1 6 2 1 4 9  T ~ 1 4 9  

This last set corresponds bijectively with the set {a �9 G[ r ~ �9 G'}, which has 

ICa(T)I-  I{T '~ �9 a '  I a �9 G} I = (Ial/ICI)" IG' n C  I 

elements. | 

LEMMA 5.2: Let ~: G --* Go be a homomorphism of finite groups and let C be 

a conjugacy class in G. For each v �9 ~(C) let C, = {a �9 C[ ~(a) = T}. Then C, 

is a conjugacy domain (i.e., a union of conjugacy classes) of Hr = ~-I ( (T}) ,  and 

I c ,  I = ICl/I, (c)l. 

Proof'. Indeed, Cr C_ ~ - I ({T})  C H , .  I f a  �9 C, and h �9 H , ,  then n (a  h) = 

T ~(h) = 7 (because K(h) �9 (r}). Hence C~ is a conjugacy domain in Hr .  
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If T' E ~(C), then Cr, and C~ are conjugate in G. Therefore ]Cr, I = [C~I. 

Furthermore, C -- U~,e~(c)C~,. Thus ICl -- I~(C)f. IC~l. 1 

To formulate the main result of this section, we fix the following data: 

(1) R0 is an integral domain with quotient field K. 

(2a) A = V - V(g) is an absolutely normal (Definition 2.3(ii)) R0-basic subset 

of A n with dim(V) = r and deg(V) -- d, and x is a generic point of V over 

K.  

(2b) S/A  is a Galois ring/set cover, and F / E  is the corresponding Galois exten- 

sion of fields. 

(2c) L is the algebraic closure of K in F, and So is the integral closure of R0 in 

L (hence So C_ S). 

(2d) L1 is the maximal purely inseparable extension of L and $1 is the integral 

closure of So in L1. 

(2e) R = Ro[A] = Ro[x, g(x) -1] and S -- R[z]. 

(2f) h(X, Z) E So[X1, . . . ,  Xn, Z] is a polynomial that satisfies h(x, z) = 0. 

(3a) So/Ro is a Galois cover, L / K  the corresponding Galois cover of fields, and 

Go = G(L/K) .  

(3b) K ~ = E N L  is the algebraic closure of K in E, and R~ is the integral closure 

of R0 in K',  and G' o = 6 ( L / K ' ) .  As R is integrally closed, R~ _C R. 

(3c) The absolutely irreducible component V0 of V containing x is defined by 

polynomials whose coefficients generate a ring Rg integral over Ro. 

(3d) x l , . . . ,  x~ is a transcendence base of E / K  (renumerate Xl , . . . ,  xn, if nec- 

essary), y is a primitive element for L 1 F / L I ( X l , . . . ,  x~), and f is an abso- 

lutely irreducible polynomial in $1 IX1, �9 �9 X~, Y] with f(Xl, .  �9 �9 x~, y) = 0. 

THEOREM 5.3: Let C be a conjugacy class of exponent e in G(F/E) .  Let 

C~ = resLC and Co = Conr (These are conjugacy classes in G~ and 

Go, respectively.) Let ~0:R0 ~ Fq be a homomorphism. Denote the reduction 

of objects via ~o by a bar. Assume further the following: 

(4a) dim(A) = r and deg(A) = d; 

(4b) each extension of ~o to a homomorphism R~o ' --+ Fq maps Vo onto an abso- 

lutely irreducible variety Vo of dimension r such that ~ does not vanish on 

all f/o; 

(4c) each extension of ~o to a homomorphism $1 --* ]Fq maps f onto an abso- 

lutely irreducible polynomial f E Yq [X1, . . . ,  X~, Y] such that degv( f )  = 
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degy(f) .  

Let A = {a �9 A(Fq)I ar (S /R ,a )  = C}, and let g = ]A[. Then 

(5) IN -/37q~1 ___/3-~(d' - 1)(d' - 2)q ~-�89 +/37.  c~(n', r, d', 5)q~-l, 

where 

Iao[ [a'onCol K]IG~ nCol 
/ 3 -  Ia~l ICol = [K' :  ICol ' 

lcl 1 i f  Co = ar(So/Ro,~o) [F:LE] ]resLCl 
7 = 0 otherwise, 

n' = n + e, and d' = d.  deg(h) ~. 

Proof: We may identify A with 

resLC G ar(So/Ro, ~o), 

{~ e Hom(R, Fq) I resRo~ = qOo and ar (S /R ,~ )  = r 

(Definition 2.6). Let h" be the purely inseparable closure of K, and let Ro be the 

integral closure of Ro in K. Replacing Ro, R~, So, R, S and K, K',  L, E, F by Ro, 

R~[Ro], So[Ro], R[Ro], S[Ro] and K, K 'K,  LK, EK,  FK,  respectively, does not 

change/3, ~/, and IAI because each ~: R ~ Fq uniquely extends to ~3: R[Ro] ~ Eq, 

etc. Thus we may assume that K is perfect, L1 = L and S1 = So (We also have 

to replace V by its irreducible component V over K, but dim(V) = dim(V) and 

deg(V) < deg(Y), by [H, Proposition 7.6(5) on p. 52].) In this case E / K '  is a 

regular extension, R~ C R~, and Co = resLC. 

By Lemma 5.1, ~o has /3 extensions to homomorphisms ~ :  R~ --* Fq. 

Suppose we fix one such ~ and prove (5) with/3 = 1 and with 

A = {~ E Hom(R, Fq) I resR~qo = qo~ and ar(S/R,  qo) = C}. 

Then (5) will hold for the original /3 and A. So, we assume without loss of 

generality that K = K ~, Ro = R~. Thus K is algebraically closed in E, and 

V = Vo is absolutely irreducible. By (4b), ~7 is an absolutely irreducible variety 

defined over Fq. 

If Co ~ ar(So/Ro, ~Oo), then "~ = 0. We must show that A = 0. But if qo e A, 

then Lemma 1.6 implies ar(So/Ro, ~o) = ConGoresLar( S /  R, ~) = ConGoresL C = 

Co, This is a contradiction. 
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Assume that Co = ar(So/Ro, ~Oo). Let ~ = (~:1,-.., 2n) be a generic point 

of V over Fq. Clearly 5 = deg(~) < deg(g) = 5. By (4b), ~(~) r 0. Let 

fi~ = V - Y(~) and /~ = Fq[.4] = Fq[~,~(~)-l]. Then x --+ ~ extends to a 

homomorphism 7r: R --+/~ which extends ~o0. By (2a) and (4a), A is normal: /~ is 

integrally closed. Extend Ir to a homomorphism p of S into the algebraic closure 

of Fq (~). Then 2 = p(z) is a primitive element for the Galois ring cover S =/~[2] 

of/~ (Remark 1.2(iii)). Denote the quotient field of/~ by E and that of S by _P. 

Then _F//~ is a Galois extension. 

Now let L = Fq[p(S0)] and ~ = p(f). Put M = L(Xl,...,x~), let lt~ = 

L(Xl,... , X r )  , and let f "  = L(21 , . . . ,  5:~,~). Then 21 , . . . ,  2~ are algebraically 

independent over L. By (4c), f is an absolutely irreducible polynomial with 

coefficients in L and with the same degree in Y as f and ] ( 2 1 , . . . ,  2~,y) = 0. 

Hence L is the algebraic closure of F in f "  and [~" : L/~]. [L/~ :/17/] = IF": h:/] = 

degy f = deg v f = [F :  M] = [F :  LE]. [LE: M]. But [F :  LE] >__ IF :  LE] > 
[_$" : L/~] and [LE : M] _> [L/~:/t:/]. Hence F '  = F and [ F :  LE] = [_F: LE]. 

Le t / t  = p(h). 
With this we have defined data as in (6) of Section 4 with a bar on each 

object (except r, d and "~). The barred data satisfies all the requirements imposed 

there. 

Denote the restriction of p to So by Po. This gives a commutative diagram 

of short exact sequences 

(6) 
1 . G(F/LE)  . G(F/E)  ,~=res~ G(L /K)  �9 1 

I p" l :  l ~; 
1 . ~ ( F / L E )  . G ( F / E )  , ~ ( L / F q )  , 1. 

The vertical arrows are injective by Lemma 1.4(b). The left one is bijective, 

because IF : L E] = IF : LE]. Chase diagram (6) to get 

(7) p* (~ (~ /$ ) )  = , : l ( p ; (6 (L /Fq) ) )  = : ~ ( ( ~ ) ) ,  

where ~- = p~(resLFrob). Notice that  r �9 ar(So/Ro, ~o0) = Co = a(C). Let 

= {a �9 G(F/E)t p*(a) �9 C and resLa = res/Frob}. 

It follows from the commutativity of (6) and from (7) that  p*(C) = {a �9 C] to(a) = 

T}. SO, p*(C) = C~, in the notation of Lemma 5.2. Hence, by that  lemma, p*(C) 
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is a conjugacy domain of p*(6(F/E)) .  Therefore C is a conjugacy domain of 

G(/~//~), and 

(8) ICI = Ip*(C)I = ICI/IresLCI = "y[F: LE] . 

Fklrthermore, every element of C is of order e. 

Observe that  if ~ E HomFq(/~,Fq), then ~ = ~ o ~r is a homomorphism 

from R to Fq whose restriction to R0 is ~0. Extend ~ to a homomorphism 

r S --* Fq and let r = r o p. Then r S --* Fq extends ~, and, by Lemma 1.4(c), 

r = p*(r If we show that the map ~ ~-* ~ o Ir is a bijection 

between 

= {~ E nom~q (R, Fq) I ar(:~//~, ~) C_ C} 

and A, then N = [A[. 

Indeed, if ~ E A, then 

r = p*(r E p*(ar(S/R, ~5)) C_ p*(C). 

From the definition of C above, r (Frob) E C. Hence, ~ E A. Conversely, if 

E A, let a = ~(x). Then a E A(Fq), and ~ --* a uniquely extends to an 

Fq-homomorphism ~:/~ -* Fq such that ~o = ~ o r .  Now, 

p*(r = r  E ar( S /R ,  ~) = r 

Since resLr ) = resLFrob (by (2) of Section 4), r E C. Thus ~ E A. 

The restriction of each element of C to L is resLFrob. So, Theorem 4.4 

gives the estimate 

(9) IN - C'q~l < ~(d' - 1)(d' - 2)q ~- �89 + ~- a(n', r, d', ~)q,-1, 

where e =  ~ n I d I d I. [F:LE]' = n + e and = d .  deg(h) ~ < d .  deg(h) ~ = As a is 

nondecreasing, this together (8) gives the desired estimate. I 

Remark 5.4: Good reduction. Let (So/Ro, S/A) satisfy (1), (2), and (3). If 

it also satisfies condition (4), we say that  (So/Ro, S/A) has good  r e d u c t i o n  

with respect to qOo. Notice that  (4) is an elementary statement about the pa- 

rameters that define V, Vo, h, and g. So, if (Ro, So, A, S) satisfies (1), (2), 

and (3), constructive elimination of quantifiers for the theory of algebraically 

closed fields IF J, Theorem 8.39] gives a nonzero element ro E Ro such that 

(So[rol]/Ro[rol], S[rol]/A ') , where A' = A - Y(ro), has good reduction with 

respect to each homomorphism ~: R0 --* ~ .  I 
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6. G a l o i s  s t r a t i f i c a t i o n  

There are several slightly different definitions of the concept of Galois stratifi- 

cation ([FJ], [FS], [FHJ], [nJ], [J1], and elsewhere). All of them keep track of 

some objects attached to the Galois groups of Galois ring/set covers. In [FS] 

and [J1] these objects are conjugacy classes of elements, whereas in [F J] they are 

conjugacy classes of subgroups of these groups. We use here the version of [F J, 

Chapter 26] (over both a finite field and a localization of Z). This may be the 

most accessible version. We recall the definition below. 

To apply the preceding results about conjugacy classes of elements, we 

introduce the following notation. For a conjugacy class C of a group G, let 

= {(r)[ T 6 C}. Observe that C is a conjugaey class of subgroups of G; 

moreover, every conjugacy class of cyclic subgroups of G is of this form. A 

con jugacy  d o m a i n  79 of subgroups of G is a union of conjugacy classes of 

subgroups of G. We say that 7) is full if 7) contains all subgroups of each group 

in 7). 

Let Ao denote either a localization Z[ko 1] of Z or a finite field Fq0. Let 

9t'(A0) be the set of finite fields Fq for which there exists a homomorphism Ao --+ 

Fq. In the first case f (A0)  = {Fq[ q is relatively prime to ko}; in the second case 

5r(Ao) = {•ql q is a power of qo}. 

A Galois  s t r a t i f i ca t ion  of the affine space A n over A0 

(1) B = (A =, D j / B j ,  Con(Bj)l j C J) 

is a partition A n = [:JjeJ Bj of A n as a finite union of disjoint absolutely normal 

Ao-basic sets Bj, each equipped with a Galois ring/set cover D j / B j  and with 

a conjugacy domain Con(Bj) of cyclic subgroups of G(Di/Br Here 'disjoint' 

means that for each Fq ~ F(A0) and for every b ~ F~q there is a unique j = 

j (b)  E J such that b E Bj(Fq). 

A quantifier free Galois  fo rmula  associated with/~ is an expression of the 

form Ar(X) C_ Con(B). This formula interpretes as follows. Let Fq E 2-(A0), 

and let b E F~q. Let j = j (b) .  ThenFq ~ Ar(b) C_ Con(B) if and only if 

Ar(b) c_ Con(Bj). 

The general Galois formulas are formed from quantifier free Galois formulas 

by quantification with the obvious interpretation. 

PROPOSITION 6.1: For each Galois formula 0(X, Y) = O(X,,.  . ., Xm, Y1,. . ., Yn) 

in m + n free variables over Ao we can effectively compute the following: 
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(a) positive integers k and ql, such that k ~ 0 in Ao; 

(b) a Galois stratification (1) of A n over A = Ao[k-1]; and 

(c) for each j E J and for each conjugacy class 7) of cyclic subgroups of 

G(Dj /B j ) ,  an integer 0 _< r = r(j ,  7)) <_ m, and rational numbers e = 

e(j, 7)) > O, # = #(j,  7)), 

such that i fFq �9 $'(A) with q > ql, b �9 Bj(Fq) and A r ( D j / B j , F q , b )  = 7) 

(Definition 2.6), then Yq(b) = [{a �9 F~q [ Fq ~ O(a, b)}[ satisfies 

(2) [Nq(b) - t~q~[ _< #eq ~-�89 

Moreover, # = 0 ff and only i f7) ~: Con(Bj). 

Proof: Apply [F J, Prop. 26.7 and Prop. 26.8] to compute k and ql in N, and a 

quantifier free Galois formula 0', which is equivalent to 0 for all Fq E 3r(Ao[k-1]) 

with q _> ql. Thus we may assume that 0 is quantifier free. Let 

(3) ,4 = (A re+n, C j A i ,  Con(A/)t i E I) 

be the Galois stratification of A "~+n over A that corresponds to 0. The conju- 

gacy domains Con(A/) consist of cyclic groups. Take ~r: A m+'~ --, A '~ to be the 

projection on the first n coordinates. 

Use the Stratification Lemma [F J, Lemrna 17.26], as in the proof of [F J, 

Lemma 25.6], to replace A by an appropriate refinement (possibly multiplying k 

by another factor) and to construct a Galois stratification (1) of A '~ over A with 

the following properties. 

For each j E J the set Bj is absolutely A-normal (see Lemma 2.4(b)), 

each absolutely irreducible component of Bj is defined by polynomials with 

coefficients integral over A, 

~'-I(Bj) ---- UiEI( j )  Ai, and ~r(Ai) = Bj for each i E I ( j ) .  

We may also assume that Dj _C Ci for each i E I(j);  otherwise replace C /by  C~ = 

CiDj (use the Stratification Lemma once more to make C~/A~ a Galois cover), and 

Con(A~) by the collection of all cyclic subgroups of ~(C~/Ai) whose restrictions to 

Ci are in Con(A/). Moreover, (Dj/A[Bj], Ci/A~) has good reduction with respect 

to each homomorphism A --* Fq (Remark 5.4), for each i E I ( j ) .  Furthermore, 

set 

(4) Con(Bj) = U C~ C~ 
iEI(j) 
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where Lj/Kj  is the Galois extension of the quotient fields corresponding to the 

cover Dj/Bj.  Then Con(Bj)  also consists of cyclic groups. For later use we 

observe that if Con(Ai) is full, for each i �9 I(j), then Con(Bj) is also full. 

Let now j �9 J and let 79 be a conjugacy class of cyclic subgroups of 

G(Dj/Bj). Let Fq �9 ~-(A) with q _> ql and b �9 Bj(Fq) such that Ar(Dj/Bj,  b) = 

7). For i �9 I(j) and for a conjugacy class C C_ G(CI/A~) denote 

P(C,b)  = { ( a , b ) � 9  A~(Fq) I ar(Ci/A~, ( a , b ) ) =  C} and Nq,i,c = ]P(C,b)[. 

By the choice of ,4, for each i �9 I and for each (a, b) �9 Ai(Fq) we have Fq 

0(a ,b)  if and only if Ar(CjAi,  (a ,b))  C_ Con(Ai). By definition (Section 1), 

ar(Ci/Ai, (a, b)) = C implies Ar(CJAi, (a, b)) = C. Hence, 

{(a,b) E~q+nlFq ~0(a,b)}= U U P(C,b), 
i e I ( j )  c 

CCCon(AI) 

and therefore 

(5) g . (b)= E 
iel(j) c 

dC_Con(Ai) 

However, if resLjC ~ ar(Dj/Bj, b), then Nq,i,c = 0 by Theorem 5.3. This hap- 

pens, in particular, if resLj C ~ 7). Hence, 

(5') Nq(b) = Z Yq, ,c, 
(~,c)~ 

where 

= {(i,C)li �9 I(j), C c Con(Ai), resL~C _C 79}. 

Thus ~ = 0 if and only if 79 r Con(Bj).  In this case Nq(b) = 0, and we set 

# = r = 0 in (2). Assume therefore that ~2 ~ 0. Let 

r = max{dimg~ (Ai)] (i, C) �9 Y/}. 

It suffices for each (i, C) E ~ to find rational numbers #i,c _> 0, ei,c _> 0, inde- 

pendent of q and b, such that 

r - - !  (6) INq,l,c - #i,cq'l <_ ei,cq 2, 
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and #~,e > 0 for at least one (i,C) E f L  Once this has been done, then from (51), 

INq(b) -  ~ /~i,cq~l< ~ e ~-�89 _ i , cq  �9 
(~,c)ea (~,c)ea 

Set # = ~ #~,c and e = (1/#) ~ r in (2). These are independent of q and b. 

Fix (i,C) Ef l .  Theorem 5.3 applies to the pair (Ci/A~, Dj /Bj)  and the 

class C. More precisely, let (F/E,  L /K)  be the pair of Galois extensions of 

the corresponding quotient fields, and let K '  be the algebraic closure of K in 

E. Let rl = dim(Ai), d = deg(Ai), and let 6 be the complementary degree of 

Ai. Put  Go = I j(Dj/Bj)  = ~(L/K)  and G~ = ~(L/K') .  Let C~ = resLC and 

Co = ConaoC~. Let e be the exponent of C, and d ~ = d.  IF : LE]% Then let 

= [K':  K] IG5 n Col 
ICol 

There are two cases to consider: 

(7a) r~ = r. Then by Theorem 5.3 

and 
ICl 1 

~' - I F :  L E ]  IC~l 

INq#,c /~'yq~l </~'~(d' 1)(d' ~-~- - - - 2 ) q  ~ + / ~ 7 . a ( m + n + c , r , d  1 ,6 )q  ~ -1  

< / ~ ( ( d '  - 1)(d' - 2) + ~(m + n + e,r,d',5))q~-�89 . 

Notice that /3 > 0, ~, > 0. By the definition of r, this case occurs for at 

least one (i, C) E f L  

(7b) ri < r. Clearly Nq,i,c <_ lii~(Fq)[, where .4i is the Zariski closure of Ai. 

By Lemma 3.1(a), [.4i(Fq)[ _< dq ~' < dq ~-1. Thus 

r - - !  INq,~,c-O.qrl < dq 2. II 

Remarks 6.2: (a) Proposition 6.1 is also true, if 0 = 0(X, Y)  is a formula in the 

language of rings. Indeed, by IF J, p. 425] we can compute kl E Z and a Galois 

formula 0'(X, Y)  over Z[kl l ] ,  which is equivalent to 0 over each ~'q with q prime 

to kl. Thus if A0 = Z[kol], apply Proposition 6.1 to O' over Ao[k{-1]. If A0 is a 

field, then by [F J, Remark 25.8] we can compute a Galois formula 0"(X, Y)  over 

A0, which is equivalent to 0 over each extension Yq of A0. Now apply Proposition 

6.1 to 9". 

Both 0 ~ and 0" have the same quantifier prefix as 0. The groups of the 

Galois stratifications associated with 01 and O r' are of order 1. 
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(b) Assume that 0(X, Y) is a quantifier free Galois formula. Proposition 

6.1 says that (for suitable k and ql) we have Nq(b) > 0 if and only if b satis- 

fies the quantifier free Galois formula 0'(Y) associated with B. In other words, 

(3X)0(X, Y) is equivalent to 0'(Y). In this way we get an eliminaton procedure 

for the theory of finite fields in the language of Galois formulas. This algorithm 

eliminates a block of quantifiers at each step, as in the original procedure of [FS], 

rather than only one quantifier at a time as in IF J]. 1 

LEMMA 6.3: Let D / B  be a Galois cover over A0. Assume that 

B = V ( f l , . . . , f m ) - V ( g )  C A  n , 

where f l , . . . ,  fro, g E Z[Y]. For each conjugacy domain 7) of cyclic subgroups of 

6(D/B)  there is a formula Or(Y) in the language of rings, such that for every 

Fq e 7(Ao) 

(s) {b e B(Fq)I Ar(D/B,  Fq,b) C/)}  = {b e ~ql Fq ~ 0~(b)}. 

Moreover, if D is full, there is h(Y, Z) E Z[Y, Z] such that Or(Y) can be taken 

to be 

(9) A fi(Y) = 0 A g(Y) # 0 A (3Z)h(Y, Z) = 0. 
i----1 

Proof." It suffices to prove the assertion for /) full. Indeed, if 7) is a single 

conjugacy class of groups, then 7) = /3 '  - D", where 7)' is the conjugacy domain 

of all subgroups of the groups in 7), and 7)" is the conjugacy domain of all proper 

subgroups of the groups in 7). Then put 0z~ = 0~, A -~0z~,,. In the general case 

write D as a union of conjugacy classes U C, and put 0~ = V 0c. 

So assume that 7) is full. Let y be a generic point of V ( f l , . . . ,  fm) over 

the quotient field of A0. Thus Ao[B] = A0[y, g(y)-l] .  Let F / E  be the extension 

of quotient fields corresponding to D/B.  For each subgroup H of G(D/B) fix 

~H G D, such that E(~H) is the fixed field of H in F, and such that ~H ~ : (~H) a, 

for all a C G(D/B). We may take ~H integral over A0 [y] and, if Ao is a localization 

of Z, even integral over Z[y]. For each conjugacy class C of subgroups of G(D/B) 

let he(Y,  Z) E Z[Y, Z] such that hc(y, Z) = irr(~H, E) for each H E C. Then let 

hc(y, Z) = l - [Hec(Z  - iH) .  Finally let h = [Ic he(Y, Z), where C runs through 

the conjugacy classes of maximal subgroups in/) .  



130 M.D. FRIED, D. HARAN, AND M. JARDEN Isr. J. Math. 

We show that h has the required property. Let Fq E ~(A0), and let b E 

B(Fq). The specialization y H b gives rise to a homomorphism r D ~ Fq 

such that r C_ Fq. We have to show that r  Z) has a root in Fq 

if and only if r �9 D. The first of these two conditions says that there 

is a maximal H �9 :D such that r �9 Fq. As 7) is full, the second condition 

says that there is a maximal H �9 :D such that r <_ H. But for every 

H <_ G(D/B)  we have r162 �9 Fq if and only if r fixes ~H, that is, 

r _< H. Thus the two conditions are equivalent. | 

THEOREM 6.4: For each formula 0(X, Y) = 0(X1, . . . ,  Xm, Y1,. . . ,  Y~) in m + n 

free variables in the first order language of rings we can effectively compute a 

finite set {(Oi, #i , ~ ~ , r i ) l i �9 I}  with the following properties. 

(a) 8i(Y) is a formula in the language of rings, #i > 0 and ei >_ 0 are rational 

numbers, and ri �9 {0 , . , . ,  n}, for each i �9 I.  

(b) For each finite field Fq and each b �9 ~q there exists a unique i �9 I such 

that Fq ~ Oi(b). 

(c) The number N (b) = �9 e (a ,b)}  I satisfies 

(10) INq(b) - #iq"t  <- tt~E,q" 2 

Proof: By Proposition 6.1 and Remark 6.2(a) we can compute k �9 Z, a Galois 

stratification (1) over Z[k-1], and numbers rl, #i, and el for each i in the set 

Ik = {(j, :P)l j E J, • is a conjugacy class of subgroups of G(Dj /B j ) } ,  

with the following property. Given i = (j,T)) EIk ,  q prime to k, and b E Bj(Fq) 

such that A r ( D j / B j , F q , b )  = ~9, we have INq ( b ) -  #iq~'[ < #ir189 By 

Lemma 6.3 we find a formula 0i = 0v, for each i EIk ,  such that  (8) holds for q, 

b as above. Then (a), (b), and (c) hold for every q prime to k. Without loss of 

generality, each Oi holds only for such q's, (replace 0i by 0i A k~0). 

Observe that if :D is full, then 0~ has the form (9). Replacing g(Y) ~ 0 by 

( 3 Z ) Z . g ( Y )  = 1, we can write 01 as As~s(o(3Z)h~8(V, Z) = 0, with h~8(Y, Z) C 

Z[Y, Z]. 

Let p be a prime. Put A0 = Fp. By Proposition 6.1, Remark 6.2(a), and 

Lemma 6.3 we can compute an integer v(p) _> 1 and a finite set {(0i, #i, e~, r~)l i E 

I~}, such that (a), (b), and (c) hold for every q = p~ with v > v(p). With- 

out loss of generality, each 0i holds only for such q's; otherwise replace 01 by 
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Z ~(p) -Z 0i Ap=0 A (3Z) f (Z)=O,  where f ( Z )  - z~(p)_l_ z E Z[Z]. Again, if 7) is full, then 

0~ is Ases(~)(3Z)h~8(Y, Z) = 0, with his(Y, Z) E Z[Y, Z]. 

Let q be a power of a prime p, say q = p~. Find a finite set { (0i, p~, r ri)] i E 

I~,~), such that (a), (b), (c) hold for this q. Without loss of generality, each 0i 

holds only for this q, otherwise replace 0i by 0i A Aq, where Aq says that the field 

has exactly q elements. 

Let I = Ik U UplkI~ t9 Uplk .[:J~<~(v) I~,.. The set {(Oi ,# i ,e i , r l ) l i  E I}  

clearly satisfies the requirements of the theorem. I 

If 0 is quantifier free, we can say more about the Oi's. Let us follow the 

above proof more carefully in this case. 

First, use Remark 6.2(a) to replace 0 by a Galois formula. The groups of the 

corresponding Galois stratification .4 are trivial. Apply the proof of Proposition 

6.1. There we have first to replace fl, by a refinement. Thus for each Galois 

cover C/A  in A either Con(A) is empty or consists of all cyclic subgroups of 

G(C/A); in particular, Con(A) is full. By (4) the r domains Con(Bj) 

of/~ are full. Therefore for i .C Ik and for i E I~ we can write the formula 0i as 

A~es(0(3Z)hi~(Y, Z) = 0, with his(Y, Z) E Z[Y, Z]. with hi~(Y, Z) E Z[Y, Z]. 

Put  I '  = {i E I k  U ~plk I~] Pl > 0}. Then for almost all finite fields Fq, 

and all b E ]~q we have Nq(b) > 1 if an only if Fq ~ Vie/, 0~(b). Therefore 

the existential formula (3X)0(X, Y)  is equivalent to V~eI, 0i(Y), for almost all 

finite fields. The latter formula can be written as As(3Z)  l-LeI, hif(i)(Y, Z) = 0, 

where f ranges over the set l-LeI, S(i).  

This gives the following result of van den Dries: 

THEOREM 6.5 ([D], (3.4)): Let 0(X,Y)  be a quantifier free formula in the lan- 

guage of rings. There exist g~, . . . ,  g~ E Z[Y, Z] (here Z is a single variable)such 

that (3X)O(X, Y)} is equivalent to h[(3Z)gi(Y,  Z) = 0 for all sufficiently large 

finite fields. 

Remark 6.6: There exists a stronger variant of Galois stratification, in which 

conjugacy domains of elements are used instead of conjugacy domains of sub- 

groups (see [FS], [JX] or [HJ]). Everywhere replace 'Ar' by 'ar' and 'C' by 'C', 

and l e t / )  be a conjugacy class of ~ ( D j / B j ) .  Then the assertion and the proof 

of Proposition 6.1 go through. This variant of Proposition 6.1 is strictly stronger 

than Theorem 6.3. This is because there are Galois formulas in this stronger lan- 

guage that are not equivalent to formulas in the language of rings [HJ, Corollary 
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1.12]. II 

As an application consider the following result (cf. [W, Theorem 1.3]). 

THEOREM 6.7: Let  0(X) = 0 ( X 1 , . . . ,  X,~) be a formula in m free variables in the 

language of rings augmented by elements of a finite field Fq (or a Galois formula 

over Fq). Let N (k) = [{a E ~qk[ Far ~ 0(a)}[. Then there is an a periodic 

sequence of numbers (rk, Pk), where 0 < rk _< m are integers and 0 <_ #k e Q, 

such that 
N (k) ~- lzkq krk -k O(qk(rk-�89 

Proof: By [F J, Remark  25.8] we may assume tha t  0 is a Galois formula. By 

Proposi t ion 6.1 (with n = 0), there exist ql _ 1, a finite (cyclic) Galois extension 

L/Fq, a set of subgroups Con of G(L/Fq) ,  and for each H <_ ~(L/Fq)  an integer 

0 <_ rH <_ m and rat ional  numbers UH,eH >_ 0, such tha t  if qk >__ ql and 

G(L/(L  N Fq~ )) = H,  then 

(11) [N (k) - I~Hq rH <_ l~HeHq r ' - � 8 9  

Let r be the Frobenius au tomorphism of Fq. Then  G(Fq~ ) = (vk), and 

hence G(L/ (L  N Fq~)) = (resLrk).  In part icular,  (11) holds, if ( (resLr)  k) = H.  

This  condit ion is periodic modulo [L : Fq]. | 
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